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Abstract The purpose of this pilot study was to determine if 
a single math-based chronometric task could accurately discrimi-
nate between college students with and without a diagnosed math
disorder. Analyzing data from 31 students (6 in the case group, 25
in the clinical comparison group), it was found that the single
chronometric task could accurately predict students who did not
have a diagnosed math disorder, but not students who had the
diagnosis. Moreover, no other non-math psychometric task could
add to the predictive power of the chronometric task, indicating
that the role of chronometry warrants further study. 
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Scientists have long made use of mental chronome-
try (Jensen, 1985). Chromometric (i.e., time-based
measures) tasks made their way into psychological
research in the late 1800s with the work of Franciscus
Donders (1868-1869/1969) and Francis Galton (1883).
While Donders was interested in using chronometric
tasks to uncover details involved in elemental cognitive
processes (e.g., discrimination, apprehension), Galton
was more concerned about using them to study indi-
vidual differences. Donders’ research agenda has been
carried on in the field of experimental psychology
(Meyer, Osman, Irwin, & Yantis, 1988), whereas
Galton’s branch of inquiries largely halted after his
death. In the late twentieth century though, a group of
researchers began to reinvestigate Galton’s ideas and
produced a formidable literature on the subject (Deary,
2000; Jensen, 1998; Vernon, 1987). 

While a significant portion of research in the indi-
vidual differences renaissance sought to determine how
performance on time-based tasks related to overall cog-
nitive functioning, defined as g by Spearman (1904),
others sought to see how they differed across various

psychopathologies (Posner, 1978). Some have even
argued that chronometric tasks have the potential for
use in clinical batteries (i.e., assessing the presence of
learning disorders; Jensen, 1987; Kulak, 1993;
Swanson, 1987). For example, Jensen (1987) and
Kranzler (1994) assert that research and theory on
learning disabilities (LD) cannot significantly advance
until researchers and clinicians use instruments that
are more sensitive to the nexus of the brain-behavior
relationship than are more traditional psychometric
instruments (e.g., the Wechsler scales). Consequently,
they have suggested the use of mental chronometric
instruments. Because chronometric tasks minimize
extraneous influences on task performance (e.g., task
strategies), they tend to be much more sensitive to the
individual differences involved in various aspects of
information processing. If one were to develop subject-
specific chronometric tasks (e.g., math facts), it would
be assumed that they could better measure individual
differences in information processing within that spe-
cific domain than more traditional psychometric
instruments. 
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To date, minimal research has been conducted in the
field of LD with chronometric tasks, especially con-
cerning processing differences between those with and
without an LD. Existing findings have been encourag-
ing, however. For example, Whyte, Curry, and Hale
(1985) and Kranzler (1994) found significant differ-
ences in the performance of various chronometric tasks
between individuals with and without a reading disor-
der, although the specific tasks used (e.g., inspection
time) tend to be a proxy for general cognitive ability
(Kranzler & Jensen, 1989; Luciano et al., 2004). Cisero,
Royer, Marchant, and Jackson (1997), in a series of
studies with chronometric tasks designed specifically to
assess various components of the reading process,
found that college students with reading learning 
disabilities consistently took longer to process and
respond to various lexical stimuli (e.g., word and
pseudo-word naming) – a result that not only differen-
tiated them from a non-diagnosed sample, but also
from a “generalized learning disability” sample.
Likewise, Hayes, Hynd, and Wisenbaker (1986) found
significant differences on a battery of chronometric
tasks between college students with and without a diag-
nosed LD, even after controlling for cognitive ability.
Nonetheless, Kranzler (1994) writes that while many of
the studies have suffered from various methodological
inadequacies, these do not allow for a disconfirmation
of other competing hypotheses as to why there might
be between-group differences in performance (e.g., dif-
ferences in the participants’ knowledge base elaborate-
ness and structure; Ceci, 1990). Thus, there is a need for
much more research in this area. 

One particular area in need of more research is the
place of chronometry in assessing math-based LDs
(MLD). People with math difficulties are a heteroge-
neous group (Fleischner & Manheimer, 1997; Knoop,
Beaujean, & Holliday, 2005), with only a subset of this
“person space” being composed of people with an MLD.
Differentiating the MLD subpopulation from other 
subpopulations, especially those with other learning
exceptionalities, can be difficult using current psycho-
metric techniques (Gonzalez & Espinel, 1999). 

Thus, given the relative dearth of research literature
on the use of chronometric tasks within the LD arena –
especially concerning MLDs – coupled with the increas-
ing need to identify and understand the specific
sources of individual differences within this popula-
tion, this pilot study was designed to begin the much
larger process of determining the validity and utility 
of time-based tasks as assessment and identification
tools. Specifically, the purpose of the study was to
determine whether a math-based chronometric task
could discriminate between individuals with and with-
out a diagnosed MLD. 

METHOD
This pilot study was designed to determine if 

a math-based chronometric task could be used to pre-
dict mathematics disorders as diagnosed by psycho-
metric instruments; namely, the math subtests of 
the Woodcock-Johnson III Tests of Achievement
(Woodcock, McGrew, & Mather, 2001). It was decided
that if this study found that the chronometric task had
good diagnostic properties, it would be the basis for 
a larger, more elaborate study. 

Participants 
Thirty-one college students participated in this study,

as part of a larger study on college students with math
difficulties (see Table 1 for descriptive statistics of 
sample). The larger study, supported by the National
Science Foundation, explored learner characteristics of
college students with math difficulties through the
administration of a traditional psychoeducational
assessment battery. Participants were all self-referred to
a campus-based psychoeducational clinic because of
mathematics difficulties. The chronometric tests were
administered to some of the self-referred participants as
supplemental instruments to the psychoeducational
battery.

Of the 31 participants, 6 met the DSM-IV-TR
(American Psychiatric Association, 2000) definition of
a mathematics disorder, in that they each exhibited (a)
mathematical ability as measured by a standardized test
below the expected range, given the individual’s age,
cognitive ability and education (IQ-Achievement dis-
crepancy); (b) significant interference in academic tasks
that require mathematics ability; and (c) significant
mathematics difficulty not attributed to, or over and
above, any sensory deficits. Additionally, none of the
six individuals with an MLD met DSM-IV-TR diagnostic
criteria for any other cognitive, learning or emotional
disorder, thereby eliminating any statistical confounds
introduced through comorbity. These participants com-
prised the case group. The other 25 participants met no
DSM-IV-TR diagnostic criteria, and thus comprised a
clinical comparison group (Kazdin, 2002). 

Instrumentation 
All participants completed both a psychometric and

a chronometric battery. The psychometric battery con-
sisted of (a) Wechsler Adult Intelligence Scale-Third
Edition (WAIS-III; Wechsler, 1997a); (b) Wechsler
Memory Scale-Third Edition (WMS-III; Wechsler,
1997b); and (c) the Mathematics and Reading subtests
(six subtests total) of the Woodcock-Johnson III Tests
of Achievement (WJ-III; Woodcock et al., 2001). 

The chronometric battery consisted of two trials of 
a mathematics task administered via the Computer-
Based Academic Assessment System (CAAS; Royer,
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1999). The CAAS collects, in milliseconds, both the
median reaction time (RT) and standard deviation reac-
tion time (SDRT) of participants performing the math-
ematics task. For this study, participants took a triple
multiplication subtest, which measures mathematics
fluency for complex multiplication facts, such as: 6 x 4
x 2 = ___. The participant responds into a microphone,
and, for correct answers, the computer registers and cal-
culates the time between the presentation of the item
on the computer screen and the verbal response pro-
vided by the participant. Two trials of 20 similar items
each were administered. Both trials take a total of
approximately 15 minutes to complete. Before taking
the chronometric tasks, each participant completed an
untimed, paper-and-pencil version of the tasks with
100% accuracy. 

RESULTS
Model Selection 

Participants’ results from the psychometric and
chronometric tasks were put into a logistic regression
to see: (a) if the chronometric task could discriminate

between the MLD and no diagnosis (ND) groups, and
(b) if a particular combination of the administered
tasks would best discriminate between the two groups.
Initially, the CAAS RT variable was put into the model,
and the model’s deviance was obtained (see Table 2).
From this initial model, other variables were added to
see if they improved the model’s fit. If adding other
variables to the model resulted in a better fit than the
original model (CAAS RT only), the change in deviance
(Δ Deviance) would be statistically significant (Neter,
Kutner, Nachtsheim, & Wasserman, 1996). 

The results of the model selection process revealed
that no other variable significantly improved the
model’s fit, suggesting that no other subtest in the data
set provided a significant improvement in the ability to
discriminate between the MLD and ND groups beyond
that of the CAAS RT (see Table 1 for mean values of the
psychometric and chronometric tasks). 

Model Fit 
Once the variables for the model were ascertained,

the overall model was assessed for fit. As most formal fit
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Table 1
Descriptive Statistics of Groups 

Comparison Case

N 25 6

Age 25.32 22.33

Race1 84 100

Sex2 68 100

ACT5 22.443 22.504

WAIS-III FSIQ6 111.96 108.17

WMS-III GM7 107.48 106.33

WJ-III TA8 107.40 107.00

CAAS RT9 6.10 9.972

1. % Caucasian. 10% were African American and 3% were Hispanic in the comparison group.
2. % Female. 
3. n =18.
4. n =4. 
5. Average ACT score. 
6. Average full scale IQ score on WAIS-III. 
7. Average general memory score on WMS-III. 
8. Average total achievement score on WJ-III. 
9. Average reaction time on CAAS task. 
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indices require a large n, this study employed two infor-
mal fit indices. First, an appropriate model must
demonstrate that “the estimated response function for
the data is monotonic and sigmoidal in shape” (Neter
et al., 1996, p. 590). To do this, a logit value was gen-
erated for each participant.1 Then, the sample was 
rank ordered and quadripartitioned into approximately
equal-sized groups based on the rank order of the logit
values (i.e., the six lowest values, the next six lowest
logit values, etc.). For each group, an average logit value

was calculated, as well as the proportion of the partici-
pants who belonged to the MLD group. 

The average logit values and MLD proportion were
graphed (see Figure 1). The resulting curve is both
monotonic and approaching a sigmoidal shape, provid-
ing evidence that the selected model was appropriate.

Second, a 2x2 table was generated to assess the 
percentage of correct and incorrect classifications
based on each participant’s probability of an MLD (see
Table 3).2 Data from Table 3 indicate that this model

Table 2
Fitted Models

Model Variables Deviance ΔDeviance df p

1 CAAS RT 16.044

2 CAAS: RT & RTSD 14.952 1.092 1 0.296

3 CAAS RT, FSIQ 16.015 0.029 1 0.865

4 CAAS, WMS General Memory 15.819 0.225 1 0.635

5 CAAS RT, WJ-III Total Achievement 16.040 0.004 1 0.950

Note. Deviance equals -2 Log Likelihood of the variables, so the change in Deviances (Δ Deviance) are distributed as chi-squares. 

Table 3
Classification Table Using Just CAAS RT

Predicted % Correct
No MD MD

No MD 24 1 96

MD 3 3 50

Overall Percentage 87.1

Note. If individual i had a probability score greater than one half (i.e., πi > .5), he/she was classified in the MD group. 
Odds ratio for this model: 4.616.
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Figure 1. Median logit value by probability of diagnosis for the quadripartitioned sample.

predicted members of the ND group with approxi-
mately 96% accuracy. However, the model was less
accurate (50% accuracy) when predicting group mem-
bership for the MLD group. Thus, it would appear that
reaction time on this single chronometric task is spe-
cific (i.e., ability to correctly classify the comparison
group), but not very sensitive (i.e., ability to correctly
classify the case group).  

CONCLUSION
Overview of Results 

The purpose of this study was to determine if chrono-
metric tasks could be used in a psychoeducational
assessment battery to aid in the determination of an
MLD. To that end, the study assessed the predictive
capability of the median reaction time on a computer-
based math task to discriminate between groups of 
collegiate participants with and without a diagnosed
MLD. It was found that the chronometric task was able
to predict those who did not have a diagnosed MLD
better than chance (96% accuracy), but was not able 
to predict those who had an MLD, thus suggesting the
task is specific but not very sensitive. 

These results are encouraging for the future use of
chronometry in clinical assessment. Because of its pilot
nature, the study used only one math-based chrono-
metric task and included a sample comprised of case
and clinical comparison groups. Both these aspects of
the study were not favorable for determining whether
the chronometric task could discriminate between
groups, yet performance on the chronometric task was
able to successfully predict those who did not have a
diagnosed MLD with approximately 96% accuracy.3

Moreover, the addition of any psychometric tasks to
the results from the chronometric tasks did not signifi-
cantly improve the model’s fit or prediction ability. 

Implications for Practice 
The results of this study can help in developing the

future educational use of time-based, content-specific
tasks related to learning disorders. A triple multiplica-
tion task was used with college students in this study,
but more basic tasks may be designed to measure
acquired mathematical skills and concepts in much
younger children. For example, elementary-aged stu-
dents, especially those identified as being at risk for
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learning difficulties, could be assessed on such elemen-
tary, time-based tasks as number naming, simple addi-
tion, and simple subtraction facts, and in later years,
multiplication and division facts. This close monitor-
ing of at-risk students as they assimilate increasingly
complex arithmetical concepts in the early stages
increases the chances of earlier identification and reme-
diation (Geary, 1994). 

Chronometric tasks are relatively easy to administer
(i.e., they are computer-based), take a short amount of
time to complete (the two trials of the task used in 
this study took less than 20 minutes total), and do not
require significant time periods between repeated
administrations. Moreover, specific chronometric tasks
can be administered to the same student frequently
during a semester or grading period. These attributes
are not true of most traditional psychometric instru-
ments, suggesting that chronometry has the potential
of holding a unique place in psychoeducational assess-
ment as either supplemental or alternative diagnostic
tools; alternatively, because they showed good speci-
ficity, chronometric tasks might be best used as screen-
ing instruments. 

This chronometric methodology may also be used 
in conjunction with curriculum-based measurement
(CBM). In CBM, teachers design brief, simple tests
(probes) to assess how well students are learning basic
skills currently being taught in the classroom. These
simple probes can be quickly administered over time to
track content mastery. CBM probes used in conjunction
with chronometric technology will increase CBM’s effi-
cacy as a screening tool for early academic concerns.
Teachers would then be able to measure a student’s con-
tent mastery with regard to current classroom concepts,
and concurrently, through analysis of chronometric
data, be able to screen the same student for underlying
information-processing differences that may signal cur-
rent or future academic difficulties. School psycholo-
gists or other qualified professionals, equipped with
common technology found in an increasing number 
of classrooms, and under controlled conditions, would
be able to quickly and precisely measure identified 
students’ level of content mastery and fluency on a vari-
ety of tasks. 

Further research is needed to investigate the saliency
of a wider range of chronometric tasks in determining
learning disorders. However, given the significant 
time and related cost advantages provided by utiliza-
tion of chronometric tasks, it appears they would be of
great potential benefit to practitioners, either as effec-
tive and quick screening instruments or as a content-
specific supplement to more comprehensive diagnostic
batteries. 
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FOOTNOTES
1. A logit value is nonlinear transformation of the probability val-
ues (see Footnote 2). It is defined as follows: 

where π is the ith individual’s probability value and ln is the nat-
ural logarithm.

2. The probability, denoted by the Greek letter pi, π, that a given
individual will be classified into Group 1 (case group), as opposed
to Group 0 (clinical comparison control group), is defined as 
follows: 

where i is a specific individual, b0 is the model’s intercept and bj

are the coefficients for the scores on variable Xj (j=1, 2, . . . ). It
ranges from 0 to 1. For the model in this analysis, the b0 value is 
-13.840 and the single variable coefficient for the CAAS RT is
1.530. 

3. A more powerful study would have used a combination of tasks
as well as a community comparison group (i.e., a group of college
students with no math problems). Due to the constraints of the
larger study, this was not possible at the time of data collection.
Because of the results of the initial study, data are currently being
gathered on the community comparison group as well as other
math-based chronometric tasks. 
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